Extensions 1→N→G→Q→1 with N=C3:Q16 and Q=C22

Direct product G=NxQ with N=C3:Q16 and Q=C22
dρLabelID
C22xC3:Q16192C2^2xC3:Q16192,1368

Semidirect products G=N:Q with N=C3:Q16 and Q=C22
extensionφ:Q→Out NdρLabelID
C3:Q16:1C22 = SD16:13D6φ: C22/C1C22 ⊆ Out C3:Q16484C3:Q16:1C2^2192,1321
C3:Q16:2C22 = D8:11D6φ: C22/C1C22 ⊆ Out C3:Q16484C3:Q16:2C2^2192,1329
C3:Q16:3C22 = D8:4D6φ: C22/C1C22 ⊆ Out C3:Q16488-C3:Q16:3C2^2192,1332
C3:Q16:4C22 = S3xC8.C22φ: C22/C1C22 ⊆ Out C3:Q16488-C3:Q16:4C2^2192,1335
C3:Q16:5C22 = D24:C22φ: C22/C1C22 ⊆ Out C3:Q16488+C3:Q16:5C2^2192,1336
C3:Q16:6C22 = C2xD4.D6φ: C22/C2C2 ⊆ Out C3:Q1696C3:Q16:6C2^2192,1319
C3:Q16:7C22 = C2xQ8.7D6φ: C22/C2C2 ⊆ Out C3:Q1696C3:Q16:7C2^2192,1320
C3:Q16:8C22 = C2xS3xQ16φ: C22/C2C2 ⊆ Out C3:Q1696C3:Q16:8C2^2192,1322
C3:Q16:9C22 = C2xQ16:S3φ: C22/C2C2 ⊆ Out C3:Q1696C3:Q16:9C2^2192,1323
C3:Q16:10C22 = S3xC4oD8φ: C22/C2C2 ⊆ Out C3:Q16484C3:Q16:10C2^2192,1326
C3:Q16:11C22 = SD16:D6φ: C22/C2C2 ⊆ Out C3:Q16484C3:Q16:11C2^2192,1327
C3:Q16:12C22 = D8:5D6φ: C22/C2C2 ⊆ Out C3:Q16488+C3:Q16:12C2^2192,1333
C3:Q16:13C22 = D8:6D6φ: C22/C2C2 ⊆ Out C3:Q16488-C3:Q16:13C2^2192,1334
C3:Q16:14C22 = C24.C23φ: C22/C2C2 ⊆ Out C3:Q16488+C3:Q16:14C2^2192,1337
C3:Q16:15C22 = C2xQ8.11D6φ: C22/C2C2 ⊆ Out C3:Q1696C3:Q16:15C2^2192,1367
C3:Q16:16C22 = C12.C24φ: C22/C2C2 ⊆ Out C3:Q16484C3:Q16:16C2^2192,1381
C3:Q16:17C22 = C2xQ8.14D6φ: C22/C2C2 ⊆ Out C3:Q1696C3:Q16:17C2^2192,1382
C3:Q16:18C22 = D12.33C23φ: C22/C2C2 ⊆ Out C3:Q16488-C3:Q16:18C2^2192,1395
C3:Q16:19C22 = D12.34C23φ: C22/C2C2 ⊆ Out C3:Q16488+C3:Q16:19C2^2192,1396
C3:Q16:20C22 = C2xQ8.13D6φ: trivial image96C3:Q16:20C2^2192,1380
C3:Q16:21C22 = D12.32C23φ: trivial image488+C3:Q16:21C2^2192,1394

Non-split extensions G=N.Q with N=C3:Q16 and Q=C22
extensionφ:Q→Out NdρLabelID
C3:Q16.1C22 = D12.30D4φ: C22/C1C22 ⊆ Out C3:Q16964C3:Q16.1C2^2192,1325
C3:Q16.2C22 = D8.10D6φ: C22/C1C22 ⊆ Out C3:Q16964-C3:Q16.2C2^2192,1330
C3:Q16.3C22 = SD16.D6φ: C22/C2C2 ⊆ Out C3:Q16968-C3:Q16.3C2^2192,1338
C3:Q16.4C22 = D12.35C23φ: trivial image968-C3:Q16.4C2^2192,1397

׿
x
:
Z
F
o
wr
Q
<